

EcoQprep[™] Genomic DNA Kit

Cat. No. K-3701

EcoQprep™ Genomic DNA Kit

Kit for the extraction of genomic DNA from whole blood, animal tissues, cultured cells, bacterial cells, or forensic samples

사용설명서

K-3701

Version No.: 0 (2025-06-04)

사용 전, 사용설명서에 있는 모든 내용을 정독하시길 바랍니다.

㈜바이오니아 대전광역시 유성구 테크노2로 71

바이오니아 글로벌센터

Tel: 1588-9788

Email: sales@bioneer.co.kr

www.bioneer.co.kr

사용 목적

EcoQprep™ Genomic DNA Kit는 연구용 제품으로 연구 목적으로만 사용할 수 있습니다. 사용자는 국가 및 사용 용도에 따라 권한 취득이 필요할 수 있습니다.

안전경고 및 주의사항

자극적이거나 유해한 물질을 다루는 경우 적절한 보호장비를 착용하시기 바랍니다. 실험복, 보호장갑, 보호안경 등의 사용을 적극 권장합니다. 자세한 정보는 물질안전보건자료 (MSDS)를 확인하시기 바랍니다.

보증 및 책임

모든 바이오니아 제품은 엄격한 품질 관리 공정 아래에서 완제품 시험 과정을 거칩니다. 바이오니아는 보증 기간 (제품표시) 동안 제품의 품질을 보증합니다. 바이오니아는 본 사용설명서에 제시된 사용법과 다른 방법을 사용하여 발생된 문제에 대해서는 책임을 지지 않습니다. 효율적인 시장보고 및 처리를 위하여 고객은 발생된 문제점을 30일 이내에 바이오니아에 상세하게 전달하여야 합니다.

ISO 9001 품질경영시스템 인증

바이오니아에서 생산되는 모든 제품은 제품 개발, 생산에서 품질 보증 및 공급업체 자격에 이르기까지 ISO 9001 규정에 의거하여 엄격한 품질관리 및 검사를 통과한 후 출하된 제품입니다.

특허

EcoQprep™과 키트는 특허 KR 10-2344395에 의해 보호됩니다.

상표

EcoQprep™은 바이오니아의 상표입니다.

저작권

Copyright 2025. 바이오니아. 무단전재 및 복제 금지

고지

제품, 서비스, 사양, 설명 등 제공된 모든 정보는 사전 예고 없이 절차에 따라 변경될 수 있습니다.

목차

제품 정보	1
제품 구성	1
보관법	1
제품 사양	2
주의사항	3
개요	4
제품 설명	4
원리	5
특징 및 장점	6
Magnetic Nano Beads	7
EcoQprep™ Magnetic Separation Rack	8
제품 정보	10
제품 구성	10
시료 준비	11
법의학 시료의 준비	12
시작 전 준비	13
Protocol I : DNA Extraction from Whole Blood	14
Protocol II: DNA Extraction from Cultured Cells	17
ProtocolⅢ: DNA Extraction from Animal Tissue	21
ProtocolIV: DNA Extraction from Bacterial Cells (Gram-Negative Bacteria)	23
Protocol V: DNA Extraction from Bacterial Cells (Gram-Positive Bacteria)	25
ProtocolVI: DNA Extraction from Various Forensic Samples	27
ProtocolVII: DNA Clean-Up	31
문제 해결	33

EcoQprep™ Genomic DNA Kit

참고	문헌	. 35
주문	정보	. 36
관련	제품	. 36
기호	설명	. 37

제품 정보

제품 구성

구성품	Cat. No	K-3701 (50 rxn)*	Storage
Proteinase K powder, lyophilized	KB-0111	25 mg x 1 ea	
RNase A powder, lyophilized	KB-3101	24 mg x 1 ea	아래 '보관법' 참조
Poly(A), lyophilized	KB-0123	1 mg x 1 ea	
Magnetic Nanobead	KB-7012	6 mL x 1 ea	
TL Buffer	KB-1022	15 mL x 1 ea	
GB Buffer	KB-2043	15 mL x 1 ea	
WM1 Buffer	KB-3035 30 mL x 1 ea		
WB2 Buffer	KB-4018C	10 mL x 1 ea	상온 보관 (15-25°C)
WE Buffer	KB-5016	40 mL x 1 ea	
EA Buffer	KB-6012	25 mL x 1 ea	
1.5 mL Tube	KA-1100	50 ea x 1 pack	
One Page Protocol	-	1 ea	

^{*} Mini – 50 rxn, Midi – 7 rxn, Maxi – 3 rxn

보관법

본 Kit는 실온(15-25℃)의 건조한 환경에서 2년 동안 보관할 수 있습니다.

사용 전에 동결 건조된 Proteinase K는 nuclease-free water 1,250 μ L, RNase A는 nuclease-free water 600 μ L에 완전히 용해시킨 후 사용합니다.

Poly(A)의 경우 nuclease-free water 1,000 μL에 완전히 용해시켜 1μg/μL 농도의 용액으로 만듭니다. 용해된 효소들의 단기 보관의 경우, 4℃에서 보관하고 장기 보관의 경우, 별도의 튜브에 분주하여 -20℃에 보관하는 것을 권장합니다.

* Note: 반복적인 냉동 및 해동은 효소 활성을 감소시킬 수 있습니다.

BQ-Q8-012-01 Revision : 6 (2024-11-25)

1

제품 사양

시료 준비 및 DNA 추출 효율

Scale		Micro	Mini	Midi	Махі
Whole blood	시료량	100 μL	200 μL	2 mL	4 mL
whole blood	DNA 수율	< 5 μg	< 10 µg	< 80 µg	< 150 µg
Cultured calls	시료량	~ 1 x 10 ⁴ cells	~ 1 x 10 ⁶ cells	~ 5 x 10 ⁶ cells	~ 1 x 10 ⁷ cells
Cultured cells	DNA 수율	<120 ng	< 12 μg	< 60 µg	< 120 µg
	시료량	~ 10 mg	~ 25 mg	~ 100 mg	~ 250 mg
Animal tissues	DNA 수율	< 5 μg	< 10 μg	< 40 µg	< 120 µg
Bacterial cells	시료량	-	~ 1 x 10 ⁹ cells	~ 5 x 10 ⁹ cells	~ 1 x 10 ¹⁰ cells
(Gram (-), (+))	DNA 수율	-	< 15 μg	< 80 µg	< 150 µg
DNA 순도			A ₂₆₀ /A ₂	280 > 1.8	
소요 시간		>5 min	>5 min	>10 min	>15 min

^{*} Note: 세포 수가 적은 시료의 DNA 수율은 표에 제시된 값보다 낮을 수 있습니다.

다양한 종류의 법의학 시료†

	Dried body fluid spot or fingerprint (FTA card, paper, cloth, etc)	~7 mm or ~2 cm ²	
	Hair	1 cm	
	Bone and teeth	~ 100 mg	
시료량	Chewing gum	~ 30 mg	
	Cigarette butts	~ 2 cm ²	
	Buccal swab	Single piece of swab	
	Urine	~15 mL	
	Saliva	1-100 μL	
DNA 수율	~ 5 μς	9	
DNA 순도 A ₂₆₀ /A ₂₈₀ > 1.8		> 1.8	
소요 시간	~ 10 min		

[†]법의학 시료: 샘플 준비에 대한 자세한 내용은 12 페이지를 참조하십시오.

BQ-Q8-012-01 Revision: 6 (2024-11-25) www.bioneer.com

^{*} Note: 시료의 종류에 따라 측정값에 차이가 있을 수 있습니다.

소량 시료로부터 micro scale의 genomic DNA 추출

EcoQprep™ Genomic DNA Extraction Kit는 소량의 시료로부터 genomic DNA를 추출할 수 있습니다. 시료에 세포 수가 적거나(< 1 x 10⁴ cells) DNA 양이 적은 경우, 시료에 약 4 µL의 Poly(A) (carrier RNA) 를 첨가하는 것이 좋습니다. Carrier RNA는 RNase digestion를 통해 추후에 제거할 수 있습니다.

권장 시료량

표 1에 제시된 양을 시료량으로 사용하는 것을 권장합니다.

표 1. 다양한 culture dishes에서의 성장 면적 및 평균 세포 수율

세포 배양 접시	성장 면적(cm²)	평균 세포 수율				
Multi well plates						
6-well	9.6	1.2 x 10 ⁶				
12-well	4	4 x 10 ⁵				
24-well	2	2 x 10 ⁵				
48-well	1	1 x 10 ⁵				
96-well	0.35-0.6	4 x 10 ⁴				
Dishes						
35 mm	8	1.2 x 10 ⁶				
60 mm	21	3 x 10 ⁶				
100 mm	55	8 x 10 ⁶				
150 mm	148	2 x 10 ⁷				
Flasks						
50 mL	25	2.5 x 10 ⁶				
300 mL	75	1 x 10 ⁷				

주의사항

- GB Buffer 및 WM1 Buffer에는 자극성이 있는 chaotropic salts가 포함되어 있으므로, 취급 시 적절한 실험 안전 수칙을 준수하고 장갑을 착용하는 것을 권장합니다.
- 사용 전에 TL Buffer 와 GB Buffer 는 흔들어 충분히 혼합하여 사용하는 것을 권장합니다.

개요

제품 설명

EcoQprep™ Genomic DNA Kit는 전혈, 동물 조직, 배양 세포, 박테리아 세포 또는 법의학 시료로부터 고순도의 genomic DNA를 추출하도록 설계되었습니다. 본 키트는 EcoQprep™ Magnetic Separation Rack (Cat. No. TM-1012, TM-1021, TM-1031, BIONEER) 및 *ExiPrep*™ 96 Lite (Cat. No. A-5250, BIONEER) 와 함께 Magnetic Nano Beads를 사용하여 genomic DNA를 추출합니다.

EcoQprep™ Genomic DNA Kit와 EcoQprep™ Magnetic Separation Rack을 함께 사용하면 원심분리 없 이 추출 시간을 단축하여 사용자 편의성을 크게 향상시킬 수 있습니다. 동일한 원리로 ExiPrep™ 96 Lite는 최대 96개의 추출된 시료(대조군 포함)를 신속하게 처리할 수 있도록 설계되었습니다. 이 과정 은 페놀/클로로포름 추출 및 에탄올 침전을 필요로 하지 않습니다.

본 키트를 통해 추출된 DNA는 유전자 클로닝, PCR, real-time PCR, 서던 블로팅, SNP 유전자형 분석 및 짧은 연쇄 반복 (STR) 분석을 포함한 다양한 응용 분야에 사용될 수 있습니다.

원리

EcoQprep™ Genomic DNA Kit 는 high molecular weight DNA(최대 40 kb)를 포함한 genomic DNA 추출을 위해 설계되었습니다. 본 키트는 chaotropic salts 이 존재하는 조건에서 핵산을 결합시키기 위해 실리카로 코팅된 Magnetic Nano Beads 를 사용합니다. Binding buffer 내의 chaotropic agents 인 Guanidine hydrochloride 는 DNA 주변과 실리카 코팅된 Magnetic Nano Beads 의 물 분자를 제거하여 실리카 코팅된 Magnetic Nano Beads 에 genomic DNA 가 포획되도록 합니다. Magnetic Nano Beads 와 DNA complex 는 자기력을 이용하여 튜브 벽에 고정됩니다. Washing buffer 을 사용하여 염과 침전물을 제거하고, 포획된 genomic DNA 는 Elution buffer 또는 nuclease-free water 로 용출됩니다.

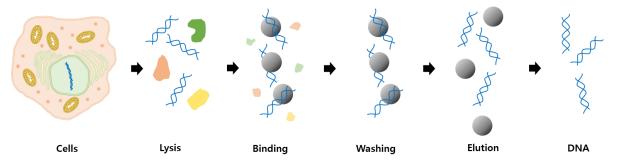


그림 1. 실리카 코팅된 Magnetic Nano Beads 를 이용한 genomic DNA 추출.

BQ-Q8-012-01 Revision: 6 (2024-11-25) www.bioneer.com

특징 및 장점

- 포괄성: 전혈, 동물조직, 배양 세포, 박테리아 세포, 타액, 소변, 지문, 모발, 손톱 또는 뼈와 같은 법의학 시료를 포함한 다양한 시료로부터 고품질 및 고수율의 genomic DNA를 추출합니다.
- 편리성: 하나의 키트로 mini, midi 및 maxi 스케일의 추출 프로토콜을 광범위하게 지원합니다.
- 신속성: Magnetic Nano Beads를 사용하여 핵산을 신속하게 추출합니다. (Mini: ~5분, Midi: ~10분, Maxi: ~15분; 샘플 전처리 제외한 시간)
- 효율성: 1 x 10⁴ cells 미만의 배양 세포를 포함하여 광범위한 시료 크기에 적용 가능합니다.
- 경제성: ExiPrep™ 96 Lite에 적용하여 DNA 추출을 자동화할 수 있습니다.

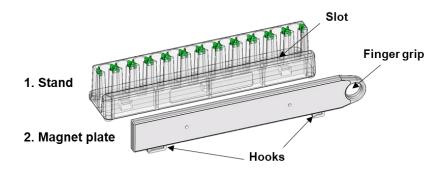
Magnetic Nano Beads

Magnetic Nano Beads는 기존 레진의 단점을 극복하고 정제 과정을 자동화하기 위해 개발되었습니다. Magnetic Nano Beads를 이용한 추출 원리는 표면에 코팅된 functional group에 핵산이 결합하는 것입니다. 그 후 외부 자기장을 이용하여 Magnetic Nano Beads를 분리합니다.

Magnetic Nano Beads의 제품 사양

Silica-coated	Magnetic	Nano	Beads
---------------	----------	------	--------------

Matrix	Silica-coated Fe ₃ O ₄
Average size	400 nm
Ligand	- OH
Working Temperature	0-100°C
Storage	상온 보관

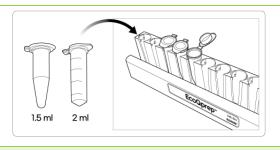

Magnetic Nano Beads의 특징 및 장점

- 신속성: 빠른 결합을 통해 한 번에 많은 양의 시료를 처리할 수 있는 자동화를 보장합니다.
- 효율성: 넓은 표면적으로 더 높은 민감도의 분석이 가능합니다.
- 특이성: 구형 구조로 비특이적 결합을 줄여 특이성을 높입니다.

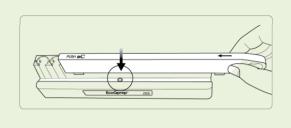
EcoQprep™ Magnetic Separation Rack

EcoQprep™ Magnetic Separation Rack은 Magnetic Nano Beads를 빠르고 쉽게 분리할 수 있도록 설계 되었습니다. 바이오니아는 1.5 또는 2 mL 튜브용 (Cat. No. TM-1012, BIONEER), 15 mL 튜브용 (Cat. No. TM-1021, BIONEER), 50 mL 튜브용 (Cat. No. TM-1031, BIONEER) 으로 다양한 크기의 Separation Rack을 제공합니다. 사용자는 필요에 따라 제품을 선택할 수 있습니다.

EcoQprep™ Magnetic Separation Rack의 구성품



- Stand: 미끄럼 방지 디자인으로 최대 12개의 튜브를 고정할 수 있습니다.
- Magnet plate: Stand의 slot에서 분리되며, 내부에 자석이 포함되어 있습니다.


EcoQprep™ Magnetic Separation Rack의 특징 및 장점

- 신속성: 핵산 (DNA 또는 RNA) 등을 빠르고 경제적으로 분리합니다.
- 편리성: 미끄럼 방지 설계로 튜브를 고정하여 원심분리나 피펫 없이 rack을 뒤집는 것만으로 폐액 을 간단하게 처리할 수 있습니다.

EcoQprep™ Magnetic Separation Rack 사용 시 권장 사항

튜브와 Rack의 방향을 확인하십시오.

Magnet plate의 앞쪽 걸쇠 부분이 Stand의 절반 이상 겹치도록 하십시오.

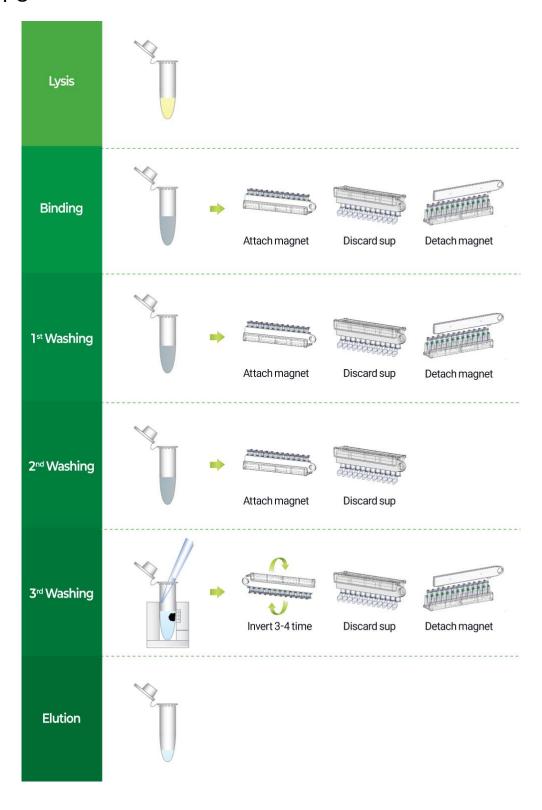
1. Magnet plate 부착 방법

1) Magnet plate 의 앞쪽 걸쇠 부분을 절반 이상 걸친 채로 Stand 위에 결합합니다.

2) Magnet plate 의 손잡이를 잡고 수평을 유지하며 멈출 때까지 밀어 넣습니다. PUSH 부분을 아래로 누른 채로 밀면 더 쉽게 작동 가능합니다.

2. Magnet plate 분리 방법

1) Magnet plate 의 손잡이를 잡고, 옆으로 당깁니다.



2) Magnet plate 를 위쪽으로 들어올려 분리합니다.

제품 정보

제품 구성

10 BQ-Q8-012-01 www.bioneer.com Revision : 6 (2024-11-25)

시료 준비

시료 채취 방법 및 보관과 같은 여러 요인이 수율 및 DNA 순도에 영향을 미칠 수 있습니다. 모든 검체는 냉동 보관하거나 채취 후 즉시 사용해야 합니다. 가능한 한 빨리 시료를 얼음에 보관하고 반복적인 냉동 및 해동을 피하는 것을 권장합니다.

저혈

전혈 시료는 즉시 사용하거나 혈액 응고 방지제(EDTA 및 ACD)가 들어 있는 튜브에 채취해야 합니다. 시료는 4℃에서 며칠 동안, -70℃에서 최대 1년 동안 보관할 수 있습니다. 사용 전에 37℃ water bath 에서 시료를 신속하게 해동하고 얼음에 보관하는 것을 권장합니다.

동물 조직

동물 조직 시료는 채취 후 즉시 사용하거나 -70℃에 보관해야 합니다. 조직 시료를 파쇄하려면 액체 질소를 이용하여 막자와 막자 사발로 갈아줍니다. 또는 Homogenizer 나 Bead-beater 를 사용할 수 있습니다.

배양 세포

배양 세포는 원심분리를 통해 쉽게 획득할 수 있습니다. 그러나 배양 세포가 너무 뭉쳐 있으면 genomic DNA 추출이 어려울 수 있습니다. 이 경우 trypsin 을 사용하여 각 세포를 클러스터에서 분리할 수 있습니다. EcoQprep™ Genomic DNA Kit 를 이용한 genomic DNA 추출 시 세포 계수기로 계산하여 세포 수가 1 x 10⁷ cells 미만이어야 합니다. 사용 전까지 시료를 얼음에 보관하는 것을 권장합니다.

박테리아 세포

수확한 박테리아 세포를 즉시 사용하거나 -20°C ~ -80°C 사이에서 보관하면 최적의 결과를 얻을 수 있습니다. 그람 양성균의 다층 세포벽을 파괴하기 위해서는 lysozyme 또는 lysostaphin 과 같은 추가적인 용균제를 사용해야 합니다. 그람 음성균의 경우에는 이러한 제제가 필요하지 않습니다.

법의학 시료의 준비

건조된 체액 얼룩 또는 지문 (FTA card, 종이, 옷감 등)

단일 펀치로 최대 7 mm 직경으로 펀칭하거나 최대 2 cm² 크기로 잘라냅니다. 용해 효율을 높이기 위해 시료를 더 작은 조각으로 자르는 것을 권장합니다.

모발

모근 끝에서 1 cm 길이로 자르며, 모근을 포함되도록 하는 것이 좋습니다. 용해 효율을 높이기 위해 시료를 더 작은 조각으로 자르는 것을 권장합니다.

뼈 및 치아

뼈 또는 치아 (최대 100 mg)를 미세한 분말로 분쇄합니다. 용해 효율을 높이기 위해 시료를 충분히 곱게 분쇄하는 것을 권장합니다.

껌

용해 효율을 높이기 위해 씹던 껌 (최대 30 mg)을 더 작은 조각으로 자르는 것을 권장합니다.

담배꽁초

담배꽁초 끝에서 최대 2 cm² 크기로 잘라냅니다.

구강 면봉

가위로 면봉을 막대에서 잘라냅니다. 핵산 추출에는 면봉 한 조각을 사용합니다.

시작 전 준비

시작하기 전에 다음 사항을 확인하십시오.

- 1. 사용 전에 Proteinase K 파우더를 1,250 µL 의 DEPC-DW (Cat. No. C-9030, BIONEER) 또는 nuclease-free water 에 완전히 녹이십시오. 용해된 Proteinase K는 단기 보관 시 4℃, 장기 보관 시 -20℃에 보관해야 합니다.
- 2. 사용 전에 RNase A 파우더를 600 μL 의 DEPC-DW (Cat. No. C-9030, BIONEER) 또는 nuclease-free water 에 완전히 녹이십시오. 용해된 RNase A 는 단기 보관 시 4°C, 장기 보관 시 -20°C 에 보관해야 합니다.
- 3. 사용 전에 Poly(A)를 1,000 µL 의 DEPC-DW (Cat. No. C-9030, BIONEER) 또는 nuclease-free water 에 완전히 녹이십시오. 용해된 Poly(A)는 단기 보관 시 4°C, 장기 보관 시 -20°C 에 보관해야 합니다.
- 4. 사용 전에 EA Buffer 를 60°C 로 예열하십시오.
- 5. 사용 전에 WM1 Buffer 및 WB2 Buffer 에 각각 명시된 양의 absolute ethanol (제공되지 않음)을 첨가하십시오 (병 라벨 참조).
- 6. TL Buffer 에 침전물이 있는 경우 60°C 에서 용해 후 사용하십시오.
- 7. 원심력(g-force)은 다음과 같이 계산할 수 있습니다: rcf = 1.12 x r x (rpm/1,000)².

* Note: 'rfc'는 상대 원심력(g), 'r'은 회전자의 반지름(cm), 'rpm'은 분당 회전수입니다.

Protocol I: DNA Extraction from Whole Blood

Micro/Mini/Midi/Maxi Scale

Step	Buffer	Micro	Mini	Midi	Maxi
Sample preparation	Sample	100 µL	200 µL	2 mL	4 mL
Lygia	Proteinase K	10 µL	20 µL	100 µL	200 μL
Lysis	GB Buffer	100 μL	200 μL	2 mL	4 mL
Precipitation	Absolute ethanol (미제공)	200 μL	400 μL	4 mL	8 mL
Binding	Magnetic Nano Bead	100 μL	100 μL	500 μL	1 mL
1 st washing	WM1 Buffer	500 μL *2	500 µL *2	3 mL *2	5 mL *2
2 nd washing	WB2 Buffer	700 µL	700 µL	5 mL	10 mL
3 rd washing	WE Buffer	700 µL	700 µL	5 mL	10 mL
Elution	EA Buffer	50 μL	100 μL	500 μL	1 mL
Tube type		1.5 or 2 mL tube	1.5 or 2 mL tube	15 mL tube	50 mL tube

1. Sample preparation

1) 전혈 또는 buffy coat 시료 100 μL (micro)/ 200 μL (mini)/ 2 mL (midi)/ 4 mL (maxi)를 사용합니다. *Note: 시료량이 적은 경우, PBS buffer (미제공, Cat. No. C-9024, BIONEER)를 첨가하여 총 부피를 100 μL (micro)/ 200 μL (mini)/ 2 mL (midi)/ 4 mL (maxi)가 되도록 합니다.

2. Lysis

- 1) Proteinase K 10 µL (micro)/ 20 µL (mini)/ 100 µL (midi)/ 200 µL (maxi)를 시료에 첨가합니다.
- 2) GB Buffer 100 μL (micro)/ 200 μL (mini)/ 2 mL (midi)/ 4 mL (maxi)를 첨가하고 vortexing 하여 잘 혼합합니다.

*Note: 용해 효율을 최대화하기 위해 시료가 완전히 재현탁되었는지 확인합니다.

3)60℃에서 10분 동안 가열합니다.

3. DNA precipitation

1) Absolute ethanol (미제공) 200 µL (micro)/ 400 µL (mini)/ 4 mL (midi)/ 8 mL (maxi)를 첨가하고 피 펫팅하여 잘 혼합합니다.

4. DNA binding

- 1) Magnetic Nano Bead 100 μL (micro, mini)/ 500 μL (midi)/ 1 mL (maxi)를 각 튜브에 첨가하고 비드 가 완전히 재현탁될 때까지 vortexing 합니다.
- 2) EcoQprep™ Magnetic Separation Rack의 Stand에 Magnet plate를 장착한 다음 비드가 자석에 모두 붙을 때까지 Rack을 3-4회 inverting 합니다.

- 그림 2. Magnet plate 장착 방법. Stand의 장착부에 Magnet plate를 화살표 방향으로 밀어 결합합니다.
- 3) EcoQprep™ Magnetic Separation Rack을 완전히 뒤집어 상층액을 버립니다. 상층액을 모두 제거하기 위해 Rack을 뒤집은 상태로 튜브 입구를 페이퍼 타월에 살짝 쳐서 흡수시키거나, 피펫을 사용할 수도 있습니다.

*Note: 비드 분리 방지를 위해 Rack을 뒤집었을 때, 과도한 힘을 가하여 비드가 떨어지지 않도록 주의하십시오.

그림 3. 상층액 제거 방법. 상층액 제거 시 용액이 옆으로 쏟아지지 않도록 완전히 뒤집어줍니다. 4) EcoQprep™ Magnetic Separation Rack에서 Magnet plate의 손잡이를 당겨 분리합니다.

그림 4. Magnet plate 분리 방법. Magnet plate를 화살표 반대 방향으로 당겨 분리합니다.

5.1st washing

- 1) WM1 Buffer 500 μL (micro, mini)/ 3 mL (midi)/ 5 mL (maxi)를 첨가합니다. 비드가 완전히 재현탁 될 때까지 vortexing하여 혼합합니다.
- 2) 상층액 제거를 위해 4-2)부터 4-3) 단계를 진행합니다.
- 3) Magnet plate를 분리합니다.
- 4) 추가 세척을 위해 5-1)부터 5-3) 단계를 한번 더 반복합니다.

6.2nd washing

- 1) WB2 Buffer 700 μL (micro, mini)/ 5 mL (midi)/ 10 mL (maxi)를 첨가합니다. 비드가 완전히 재현탁 될 때까지 vortexing하여 혼합합니다.
- 2) 상층액 제거를 위해 4-2)부터 4-3) 단계를 진행합니다.

*Note: Rack에서 Magnet plate를 분리하지 마십시오.

7.3rd washing

1) 비드 반대쪽 방향으로 WE Buffer 700 μL (micro, mini)/ 5 mL (midi)/ 10 mL (maxi)를 첨가합니다. 캡을 닫고 Rack을 천천히 2회 inverting 하여 시료에서 에탄올을 제거합니다.

*Note: WE Buffer를 비드에 직접 피펫팅하거나, vortexing 또는 튜브를 격렬하게 흔들면 비드에 결합된 핵산이 떨어져 나가 DNA 수율이 감소할 수 있습니다.

그림 5. 3rd washing 방법.

- 2) 상층액을 버리고 남은 상층액은 Rack을 뒤집은 상태로 튜브 입구를 페이퍼 타월에 살짝 쳐서 흡수시키거나, 피펫으로 제거합니다.
- 3) EcoQprep™ Magnetic Separation Rack에서 Magnet plate의 손잡이를 당겨 분리합니다.

8. Elution

- 1) EA Buffer 50 μ L (micro)/ 100 μ L (mini)/ 500 μ L (midi)/ 1 mL (maxi)를 첨가하고 vortexing 또는 피펫팅하여 재현탁합니다.
- 2) 60°C에서 최소 1분 동안 가열한 후 충분히 vortexing 합니다.
- 3) Magnet plate를 장착하고 DNA를 포함한 상층액을 새 튜브로 옮깁니다.

*Note: 비드를 재사용하지 마십시오.

Protocol II: DNA Extraction from Cultured Cells

Micro/Mini/Midi/Maxi Scale

Step	Buffer	Micro	Mini	Midi	Maxi
	Cultured Cells	~ 1 x 10 ⁴	~ 1 x 10 ⁶	~ 5 x 10 ⁶	~ 1 x 10 ⁷
Sample preparation	PBS (미제공)	100 µL	200 µL	1 mL	1 mL
	Poly(A)	4 μL	-	-	-
	Proteinase K	10 µL	20 µL	100 µL	200 µL
Lysis	RNase A	2 µL	10 µL	75 µL	150 µL
	GB Buffer	100 µL	200 μL	1 mL	1 mL
Precipitation	Absolute ethanol (미제공)	200 μL	400 μL	2 mL	2 mL
Binding	Magnetic Nano Bead	100 μL	100 μL	500 μL	1 mL
1 st washing	WM1 Buffer	700 µL	700 µL	5 mL	10 mL
2 nd washing	WB2 Buffer	700 µL	700 µL	5 mL	10 mL
3 rd washing	WE Buffer	700 µL	700 μL	5 mL	10 mL
Elution	EA Buffer	50 μL	100 μL	500 μL	1 mL
Tube type		1.5 or 2 mL tube	1.5 or 2 mL tube	15 mL tube	15 mL tube

1. Sample preparation

- 1) 배양된 세포 ~ 1 x 10⁴ cells (micro)/ ~ 1 x 10⁶ cells (mini)/ ~ 5 x 10⁶ cells (midi)/ ~ 1 x 10⁷ cells (maxi)를 300 x g에서 10분 동안 원심분리하여 세포 펠렛을 얻습니다. 세포 펠렛을 건드리지 않도록 주의하여 상층액을 버립니다.
- 2)세포 펠렛을 PBS buffer (미제공) 100 μ L (micro)/ 200 μ L (mini)/ 1 mL (midi, maxi)에 재현탁하고, 아래 명시된 튜브로 옮깁니다.
 - A. (Micro/ Mini) 세포 현탁액을 1.5 mL 또는 2 mL튜브로 옮깁니다.
 - B. (Midi/ Maxi) 세포 현탁액을 15 mL 튜브로 옮깁니다.
- 3) Micro scale의 미량 시료 (~1 x 10⁴ cells)를 사용한다면, Poly (A) 4 µL (micro)를 첨가합니다.

2. Lysis

- 1) Proteinase K 10 µL (micro)/ 20 µL (mini)/ 100 µL (midi)/ 200 µL (maxi)를 시료에 첨가합니다.
- 2) RNA가 제거된 genomic DNA가 필요한 경우, RNase A 2 μL (micro)/ 10 μL (mini)/ 75 μL (midi)/ 150 μL (maxi)를 첨가하고 vortexing하여 잘 혼합합니다.
- 3) 실온에서 2분동안 반응시킵니다.
- 4) GB Buffer 100 μL (micro)/ 200 μL (mini)/ 1 mL (midi, maxi)를 첨가하고 vortexing하여 잘 혼합합니다.

*Note: 용해 효율을 최대화하기 위해 시료가 완전히 재현탁되었는지 확인합니다.

5) 60°C에서 10분 동안 가열합니다.

3. DNA precipitation

1) Absolute ethanol (미제공) 200 µL (micro)/ 400 µL (mini)/ 2 mL (midi, maxi)를 첨가하고 피펫팅하여 잘 혼합합니다.

4. DNA binding

- 1) Magnetic Nano Bead 100 μL (micro, mini)/ 500 μL (midi)/ 1 mL (maxi)를 각 튜브에 첨가하고 비드 가 완전히 재현탁될 때까지 vortexing 합니다.
- 2) EcoQprep™ Magnetic Separation Rack의 Stand에 Magnet plate를 장착한 다음 비드가 자석에 모두 붙을 때까지 Rack을 3-4회 inverting 합니다.

- 그림 2. Magnet plate 장착 방법. Stand의 장착부에 Magnet plate를 화살표 방향으로 밀어 결합합니다.
- 3) EcoQprep™ Magnetic Separation Rack에서 튜브를 그대로 둔 채로 Rack을 완전히 뒤집어 상층액을 버립니다. 상층액을 모두 제거하기 위해 Rack을 뒤집은 상태로 튜브 입구를 페이퍼 타월에 살짝 쳐서 흡수시키거나, 피펫을 사용할 수도 있습니다.

*Note: 비드 분리 방지를 위해 Rack을 뒤집었을 때, 과도한 힘을 가하여 비드가 떨어지지 않도록 주의하십시오.

그림 3. 상층액 제거 방법. 상층액 제거 시 용액이 옆으로 쏟아지지 않도록 완전히 뒤집어줍니다.

4) EcoQprep™ Magnetic Separation Rack에서 Magnet plate의 손잡이를 당겨 분리합니다.

그림 4. Magnet plate 분리 방법. Magnet plate를 화살표 반대 방향으로 당겨 분리합니다.

5.1st washing

- 1) WM1 Buffer 700 μL (micro, mini)/ 3 mL (midi)/ 5 mL (maxi)를 첨가합니다. 비드가 완전히 재현탁 될 때까지 vortexing하여 혼합합니다.
- 2) 상층액 제거를 위해 4-2)부터 4-3) 단계를 진행합니다.
- 3) Magnet plate를 분리합니다.

6. 2nd washing

- 1) WB2 Buffer 700 μL (micro, mini)/ 5 mL (midi)/ 10 mL (maxi)를 첨가합니다. 비드가 완전히 재현탁 될 때까지 vortexing하여 혼합합니다.
- 2) 상층액 제거를 위해 4-2)부터 4-3) 단계를 진행합니다.
 - *Note: Rack에서 Magnet plate를 분리하지 마십시오.

7.3rd washing

1)비드 반대쪽 방향으로 WE Buffer 700 μL (micro, mini)/ 5 mL (midi)/ 10 mL (maxi)를 첨가합니다. 캡을 닫고 Rack을 천천히 2회 inverting 하여 시료에서 에탄올을 제거합니다.

*Note: WE Buffer를 비드에 직접 피펫팅하거나, vortexing 또는 튜브를 격렬하게 흔들면 비드에 결합된 핵산이 떨어져 나가 DNA 수율이 감소할 수 있습니다.

그림 5. 3rd washing 방법.

- 2) 상층액을 버리고 남은 상층액은 Rack을 뒤집은 상태로 튜브 입구를 페이퍼 타월에 살짝 쳐서 흡수시키거나, 피펫으로 제거합니다.
- 3) EcoQprep™ Magnetic Separation Rack에서 Magnet plate의 손잡이를 당겨 분리합니다.

8. Elution

- 1) EA Buffer 50 μ L (micro)/ 100 μ L (mini)/ 500 μ L (midi)/ 1 mL (maxi)를 첨가하고 vortexing 또는 피 펫팅하여 재현탁합니다.
- 2)60°C에서 최소 1분 동안 가열한 후 충분히 vortexing 합니다.
- 3) Magnet plate를 장착하고 DNA를 포함한 상층액을 새 튜브로 옮깁니다.

*Note: 비드를 재사용하지 마십시오.

Protocol III: DNA Extraction from Animal Tissue

Micro/Mini/Midi/Maxi Scale

Step	Buffer	Micro	Mini	Midi	Maxi
Sample preparation	Animal Tissue	~ 10 mg	~ 25 mg	~ 100 mg	~ 250 mg
	TL Buffer	90 µL	180 µL	1.8 mL	3.6 mL
Lvoio	Proteinase K	10 µL	20 µL	100 μL	200 µL
Lysis	RNase A	5 μL	10 µL	75 µL	150 µL
	GB Buffer	100 μL	200 μL	2 mL	4 mL
Precipitation	Absolute ethanol (미제공)	200 μL	400 μL	4 mL	8 mL
Binding	Magnetic Nano Bead	100 μL	100 μL	500 μL	1 mL
1 st washing	WM1 Buffer	700 µL	700 µL	5 mL	10 mL
2 nd washing	WB2 Buffer	700 µL	700 μL	5 mL	10 mL
3 rd washing	WE Buffer	700 µL	700 µL	5 mL	10 mL
Elution	EA Buffer	100 μL	100 μL	500 μL	1 mL
Tube type		1.5 or 2 mL tube	1.5 or 2 mL tube	15 mL tube	50 mL tube

1. Sample preparation (Homogenization)

- 1) 신선하거나 해동된 동물 조직 시료 ~ 10 mg (micro)/ ~ 25 mg (mini)/ ~ 100 mg (midi)/ ~ 250 mg (maxi)를 막자와 막자사발 (또는 균질기 등)을 이용하여 분쇄하거나 균질화하여 아래 명시된 튜브에 넣습니다. 단단한 조직은 액체 질소[†]를 이용하여 미세한 분말로 분쇄할 수 있습니다.
 - A. (Micro/ Mini) 균질화된 조직 시료를 1.5 mL 또는 2 mL튜브로 옮깁니다.
 - B. (Midi) 균질화된 조직 시료를 15 mL 튜브로 옮깁니다.
 - C. (Maxi) 균질화된 조직 시료를 50 mL 튜브로 옮깁니다.
 - *Note: 시료가 완전히 분쇄되지 않으면 DNA 수율이 현저하게 감소할 수 있습니다.

BQ-Q8-012-01 Revision: 6 (2024-11-25) www.bioneer.com

[†] 분쇄 후에는 액체 질소를 모두 증발시킵니다.

2. Lysis

- 1) TL Buffer 90 µL (micro)/ 180 µL (mini)/ 1.8 mL (midi)/ 3.6 mL (maxi)를 첨가합니다.
- 2) Proteinase K 10 μ L (micro)/ 20 μ L (mini)/ 100 μ L (midi)/ 200 μ L (maxi)를 시료에 첨가하고 vortexing하여 잘 혼합합니다.
- 3) RNA가 제거된 genomic DNA가 필요한 경우, RNase A 5 μ L (micro)/ 10 μ L (mini)/ 75 μ L (midi)/ 150 μ L (maxi)를 첨가하고 vortexing하여 잘 혼합합니다.
- 4) 실온에서 2분동안 반응시킵니다.
- 5)시료가 완전히 용해될 때까지 60℃에서 가열합니다.
- 6) GB Buffer 100 μL (micro)/ 200 μL (mini)/ 2 mL (midi)/ 4 mL (maxi)를 첨가하고 vortexing하여 잘 혼합합니다.

*Note: 용해 효율을 최대화하기 위해 시료가 완전히 재현탁되었는지 확인합니다.

3. DNA precipitation

- 1) Absolute ethanol (미제공) 200 µL (micro)/ 400 µL (mini)/ 4 mL (midi))/ 8 mL (maxi)를 첨가하고 피펫팅하여 잘 혼합합니다.
- 2) **18 페이지**의 "Protocol II: DNA Extraction from Cultured Cells"의 **4.** DNA binding 단계로 이동 하여 이후 단계를 진행하십시오.

ProtocolIV: DNA Extraction from Bacterial Cells (Gram-Negative Bacteria)

Mini/Midi/Maxi Scale

Step	Buffer	Mini	Midi	Maxi
Sample preparation	Bacterial cells	s ~ 1 x 10 ⁹ ~ 5 x 10 ⁹		~ 1 x 10 ¹⁰
	TL Buffer	180 μL	1.8 mL	3.6 mL
Lveic	Proteinase K	20 μL	100 μL	200 μL
Lysis	RNase A	10 μL	75 µL	150 µL
	GB Buffer	200 μL	2 mL	4 mL
Precipitation	Absolute ethanol (미제공)	400 µL	4 mL	8 mL
Binding	Magnetic Nano Bead	100 μL	500 μL	1 mL
1 st washing	WM1 Buffer	700 µL	5 mL	10 mL
2 nd washing	WB2 Buffer	700 µL	5 mL	10 mL
3 rd washing	WE Buffer	700 µL	5 mL	10 mL
Elution	EA Buffer	100 μL	500 μL	1 mL
Tube	type	1.5 or 2 mL tube	15 mL tube	50 mL tube

1. Sample preparation

- 1) 박테리아 세포 ~ 1 x 10 9 cells (mini)/ ~5 x 10 9 cells (midi)/ ~ 1 x 10 1 0 cells (maxi) cells를 6000 x g 에서 10분 동안 원심분리하여 세포 펠렛을 얻습니다. 세포 펠렛을 건드리지 않도록 주의하여 상 층액을 버립니다.
- 2) TL Buffer 180 μ L (mini)/ 1.8 mL (midi)/ 3.6 mL (maxi)을 첨가하고 vortexing 또는 피펫팅하여 재현 탁합니다. 아래 명시된 튜브로 옮깁니다.
 - A. (Micro/ Mini) 세포 현탁액을 1.5 mL 또는 2 mL튜브로 옮깁니다.
 - B. (Midi/ Maxi) 세포 현탁액을 15 mL 튜브로 옮깁니다.

2. Lysis

- 1) TL Buffer 180 µL (mini)/ 1.8 mL (midi)/ 3.6 mL (maxi)를 첨가합니다.
- 2) Proteinase K 20 μL (mini)/ 100 μL (midi)/ 200 μL (maxi)를 시료에 첨가하고 vortexing하여 잘 혼합합니다.
- 3) RNA가 제거된 genomic DNA가 필요한 경우, RNase A 10 μL (mini)/ 75 μL (midi)/ 150 μL (maxi)를 첨가하고 vortexing하여 잘 혼합합니다.
- 4) 실온에서 2분동안 반응시킵니다.
- 5)시료가 완전히 용해될 때까지 60℃에서 가열합니다.
- 6) GB Buffer 100 µL 200 µL (mini)/ 2 mL (midi)/ 4 mL (maxi)를 첨가하고 vortexing하여 잘 혼합합니다.

*Note: 용해 효율을 최대화하기 위해 시료가 완전히 재현탁되었는지 확인합니다.

3. DNA precipitation

- 1) Absolute ethanol (미제공) 400 µL (mini)/ 4 mL (midi))/ 8 mL (maxi)를 첨가하고 피펫팅하여 잘 혼합합니다.
- 2) **18 페이지**의 "Protocol II: DNA Extraction from Cultured Cells"의 **4.** DNA binding 단계로 이동 하여 이후 단계를 진행하십시오.

Protocol V: DNA Extraction from Bacterial Cells (Gram-Positive Bacteria)

Mini/Midi/Maxi Scale

Step	Buffer	Mini	Midi	Maxi	
Sample preparation	Sample preparation Bacterial cells		~ 1 x 10 ⁹ ~ 5 x 10 ⁹		
	Lysis Buffer (미제공)	180 μL	1.8 mL	3.6 mL	
	Lysozyme (미제공)	20 μL	100 μL	200 μL	
Lysis	RNase A	10 μL	75 µL	150 μL	
	Proteinase K	20 μL	100 μL	200 μL	
	GB Buffer	200 μL	2 mL	4 mL	
Precipitation	Absolute ethanol (미제공)	400 µL	4 mL	8 mL	
Binding	Magnetic Nano Bead	100 μL	500 μL	1 mL	
1 st washing	WM1 Buffer	fer 700 μL 5 mL		10 mL	
2 nd washing	2 nd washing WB2 Buffer		5 mL	10 mL	
3 rd washing	3 rd washing WE Buffer		5 mL	10 mL	
Elution EA Buffer		100 μL	L 500 μL		
Tube type		1.5 or 2 mL tube	15 mL tube	50 mL tube	

1. Sample preparation

- 1) 박테리아 세포 ~ 1 x 10 9 cells (mini)/ ~5 x 10 9 cells (midi)/ ~ 1 x 10 1 0 cells (maxi) cells를 6000 x g 에서 10분 동안 원심분리하여 세포 펠렛을 얻습니다. 세포 펠렛을 건드리지 않도록 주의하여 상 층액을 버립니다.
- 2) Lysis Buffer (그람 양성균용, 미제공) 180 μL (mini)/ 1.8 mL (midi)/ 3.6 mL (maxi)을 첨가하고 vortexing 또는 피펫팅하여 재현탁합니다. 아래 명시된 튜브로 옮깁니다.
 - * **Note**: 그람 양성균용 Lysis Buffer는 다음과 같은 조성으로 제조합니다: 20 mM Tris-HCl (pH 8.0), 2 mM sodium EDTA, and 1.2% Triton® X-100.
 - A. (Mini) 세포 현탁액을 1.5 mL 또는 2 mL튜브로 옮깁니다.
 - B. (Midi) 세포 현탁액을 15 mL 튜브로 옮깁니다.
 - C. (Maxi) 세포 현탁액을 50 mL 튜브로 옮깁니다.

2. Lysis

- 1) Lysozyme (100 mg/mL, 미제공) 20 µL (mini)/ 100 µL (midi)/ 200 µL (maxi)를 첨가하고 vortexing하여 잘 혼합합니다.
- 2) RNA가 제거된 genomic DNA가 필요한 경우, RNase A 10 μL (mini)/ 75 μL (midi)/ 150 μL (maxi)를 첨가하고 vortexing하여 잘 혼합합니다.
- 3)37℃에서 30분동안 반응시킵니다.
- 4) Proteinase K 20 μL (mini)/ 100 μL (midi)/ 200 μL (maxi)를 첨가하고 vortexing하여 잘 혼합합니다.
- 5) GB Buffer 200 µL (mini)/ 2 mL (midi)/ 4 mL (maxi)를 첨가하고 vortexing하여 잘 혼합합니다.
- 6) 그람 양성균이 완전히 용해될 때까지 60℃에서 30분동안 가열합니다.

3. DNA precipitation

- 1) Absolute ethanol (미제공) 400 µL (mini)/ 4 mL (midi))/ 8 mL (maxi)를 첨가하고 피펫팅하여 잘 혼합합니다.
- 2) **18 페이지**의 "Protocol**II**: DNA Extraction from Cultured cells"의 **4.** DNA binding **단계**로 이동하여 이후 단계를 진행하십시오.

ProtocolVI: DNA Extraction from Various Forensic Samples

Step	Buffer	Forensic samples	Urine	Saliva	
Sample preparation	-	Pretreated samples	~ 15 mL	1-100 µL	
Lysis	Proteinase K	10 μL	10 µL	10 µL	
	TL Buffer	300 µL	300 µL	-	
	GB Buffer	300 µL	300 µL	100 µL	
Precipitation	Absolute ethanol (not provided)	600 µL	600 µL	600 µL	
Binding	Magnetic Nano Bead	100 µL	100 µL	100 μL	
1 st washing	WM1 Buffer	700 µL	700 µL	700 µL	
2 nd washing	WB2 Buffer	700 µL	700 µL	700 μL	
3 rd washing	WE Buffer	700 µL	700 µL	700 μL	
Elution	Elution EA Buffer		100 µL	100 μL	

DNA Extraction from Forensic samples (Urine 및 Saliva 제외)

1. Sample preparation

- 1)12 페이지의 전처리 방법에 따라 법의학 샘플을 준비합니다.
- 2) 수집된 샘플을 1.5 mL 튜브에 넣습니다.

2. Lysis

- 1) 시료에 Proteinase K 10 µL를 첨가합니다.
- 2) TL Buffer 300 µL를 첨가하고 vortexing하여 잘 혼합합니다.
- 3)(선택사항) 시료에 1M DTT(미제공) 20 µL를 첨가하고 vortexing하여 잘 혼합합니다.
 - *Note: 모발, 손톱 조각 또는 정액 얼룩인 경우, DNA 수율을 높이기 위해 이 단계가 필요합니다.
- 4)60℃에서 최소 1시간 동안 가열합니다.
 - *Note: 샘플 유형 및 연령에 따라 시간이 더 오래 걸릴 수 있습니다. 특히, 모발, 손톱 조각 또는 정액 얼룩 인 경우 필요에 따라 하루 이상으로 가열 시간을 더 늘리십시오.
- 5) GB Buffer 300 μL를 첨가하고 vortexing하여 잘 혼합합니다.
 - *Note: 용해 효율을 최대화하기 위해 시료가 완전히 재현탁되었는지 확인합니다.
- 6)(선택사항) Poly(A) 2 µL를 첨가하고 잘 혼합합니다.
- 7)60℃에서 20분 동안 가열합니다.
- 8) 18,000 x g으로 1분 동안 원심분리합니다.
- 9) 상층액을 조심스럽게 새 1.5 mL 또는 2 mL 튜브에 옮깁니다.

3. DNA precipitation

- 1) Absolute ethanol (미제공) 600 µL를 첨가하고 피펫팅하여 잘 혼합합니다.
- 2) **18 페이지**의 "Protocol II: DNA Extraction from Cultured cells"의 **4.** DNA binding **단계**로 이동 하여 이후 단계를 진행하십시오.

DNA Extraction from Urine

1. Sample preparation

- 1) 소변 시료를 원심분리하고, 상층액을 버립니다.
 - A. (~2 mL) 6,000 x g에서 2분 동안 원심분리합니다.
 - B. (~15 mL) 2,000 x g에서 10분 동안 원심분리합니다.
- 2) PBS Buffer (미제공, Cat. No C-9024, BIONEER) 500 μ L를 첨가하고, vortexing 또는 피펫팅하여 시료를 재현탁합니다. 시료를 1.5 mL 또는 2 mL 튜브에 옮깁니다.
- 3)6,000 x g에서 2분 동안 원심분리하고 상층액을 버립니다.

2. Lysis

- 1) 시료에 Proteinase K 10 µL를 첨가합니다.
- 2) TL Buffer 300 µL를 첨가하고 vortexing하여 잘 혼합합니다.
- 3)(선택사항) 시료에 1M DTT(미제공) 20 µL를 첨가하고 vortexing하여 잘 혼합합니다.
 - *Note: 소변에 정액이 포함된 경우, DNA 수율을 높이기 위해 이 단계가 필요합니다.
- 4)60℃에서 1시간 동안 가열합니다.
- 5) GB Buffer 300 μL를 첨가하고 vortexing하여 잘 혼합합니다.
 - *Note: 용해 효율을 최대화하기 위해 시료가 완전히 재현탁되었는지 확인합니다.

3. DNA precipitation

- 1) Absolute ethanol (미제공) 600 µL를 첨가하고 피펫팅하여 잘 혼합합니다.
- 2) **18 페이지**의 "Protocol II: DNA Extraction from Cultured cells"의 **4.** DNA binding 단계로 이동 하여 이후 단계를 진행하십시오.

DNA Extraction from Saliva

1. Sample preparation

1) 타액 1-100 µL를 깨끗한 1.5 mL 또는 2 mL 튜브에 넣습니다.

*Note: 시료량이 100 μ L보다 적으면 PBS buffer (미제공, Cat. No C-9024, BIONEER)를 첨가하여 총 부피를 100 μ L가 되도록 합니다.

2. Lysis

- 1) 시료에 Proteinase K 10 µL를 첨가합니다.
- 2) GB Buffer 100 μL를 첨가하고 vortexing하여 잘 혼합합니다.
 - *Note: 용해 효율을 최대화하기 위해 시료가 완전히 재현탁되었는지 확인합니다.
- 3)60℃에서 10분 동안 가열합니다.

3. DNA precipitation

- 1) Absolute ethanol (미제공) 600 µL를 첨가하고 피펫팅하여 잘 혼합합니다.
- 2) **18 페이지**의 "Protocol II: DNA Extraction from Cultured cells"의 **4.** DNA binding 단계로 이동하여 이후 단계를 진행하십시오.

ProtocolVII: DNA Clean-Up

1. Sample preparation

- 1)추출된 DNA 용액을 아래 명시된 튜브로 옯깁니다.
 - (Micro/ Mini) Eluate를 1.5 mL 또는 2 mL튜브로 옮깁니다.
 - (Midi/ Maxi) Eluate를 15 mL 튜브로 옮깁니다.

2. Lysis

- 1) RNA가 제거된 genomic DNA가 필요한 경우, RNase A 10 µL (mini)/ 75 µL (midi)/ 150 µL (maxi)를 첨가하고 vortexing하여 잘 혼합합니다.
- 2) 실온에서 2분동안 반응시킵니다.
- 3) 사용한 Eluate와 동일한 양의 GB Buffer를 첨가하고 vortexing하여 잘 혼합합니다.

3. DNA precipitation

1) 사용한 Eluate의 3배 양에 해당하는 Absolute ethanol (미제공)를 첨가하고 피펫팅하여 잘 혼합합 니다.

4. DNA binding

- 1) Magnetic Nano Bead 100 μL (micro, mini)/ 500 μL (midi)/ 1 mL (maxi)를 각 튜브에 첨가하고 비드 가 완전히 재현탁될 때까지 vortexing 합니다.
- 2) EcoQprep™ Magnetic Separation Rack의 Stand에 Magnet plate를 장착한 다음 비드가 자석에 모 두 붙을 때까지 Rack을 3-4회 inverting 합니다.

- 그림 2. Magnet plate 장착 방법. Stand의 장착부에 Magnet plate를 화살표 방향으로 밀어 결합 합니다.
- 3) EcoQprep™ Magnetic Separation Rack에서 튜브를 그대로 둔 채로 Rack을 완전히 뒤집어 상층액 을 버립니다. 상층액을 모두 제거하기 위해 Rack을 뒤집은 상태로 튜브 입구를 페이퍼 타월에 살 짝 쳐서 흡수시키거나, 피펫을 사용할 수도 있습니다.
 - *Note: 비드 분리 방지를 위해 Rack을 뒤집었을 때, 과도한 힘을 가하여 비드가 떨어지지 않도록 주의하십 시오.

그림 3. 상층액 제거 방법. 상층액 제거 시 용액이 옆으로 쏟아지지 않도록 완전히 뒤집어줍니다.

4) EcoQprep™ Magnetic Separation Rack에서 Magnet plate의 손잡이를 당겨 분리합니다.

그림 4. Magnet plate 분리 방법. Magnet plate를 화살표 반대 방향으로 당겨 분리합니다.

5.1st washing

- 1) WB2 Buffer 700 μL (micro, mini)/ 5 mL (midi)/ 10 mL (maxi)를 첨가합니다. 비드가 완전히 재현탁 될 때까지 vortexing하여 혼합합니다.
- 2) 상층액 제거를 위해 4-2)부터 4-3) 단계를 진행합니다.

*Note: Rack에서 Magnet plate를 분리하지 마십시오.

6.3rd washing

1)비드 반대쪽 방향으로 WE Buffer 700 µL (micro, mini)/ 5 mL (midi)/ 10 mL (maxi)를 첨가합니다. 캡을 닫고 Rack을 천천히 2회 inverting 하여 시료에서 에탄올을 제거합니다.

*Note: WE Buffer를 비드에 직접 피펫팅하거나, vortexing 또는 튜브를 격렬하게 흔들면 비드에 결합된 핵산이 떨어져 나가 DNA 수율이 감소할 수 있습니다.

그림 5. 3rd washing 방법.

- 2) 상층액을 버리고 남은 상층액은 Rack을 뒤집은 상태로 튜브 입구를 페이퍼 타월에 살짝 쳐서 흡수시키거나, 피펫으로 제거합니다.
- 3) EcoQprep™ Magnetic Separation Rack에서 Magnet plate의 손잡이를 당겨 분리합니다.

7. Elution

- 1) EA Buffer 50 μ L (micro)/ 100 μ L (mini)/ 500 μ L (midi)/ 1 mL (maxi)를 첨가하고 vortexing 또는 피 펫팅하여 재현탁합니다.
- 2)60°C에서 최소 1분 동안 가열한 후 충분히 vortexing 합니다.
- 3) Magnet plate를 장착하고 DNA를 포함한 상층액을 새 튜브로 옮깁니다.

*Note: 비드를 재사용하지 마십시오.

문제 해결

문제점	원인 및 해결 방법			
낮은 genomic DNA 수 율	• Buffer 또는 기타 시약은 보관 조건에 따라 효율이 감소될 수 있습니다. 다. 모든 시약은 제품을 받으신 즉시 실온 (15-25°C)에 보관하십시오. pH 및 안정성을 유지하고 오염을 방지하기 위해 사용 후에는 항상 뚜껑을 닫아서 보관하십시오.			
	 특히 조직 샘플의 경우, Lysis가 불완전하게 진행되었을 수 있습니다. 샘플의 탁했던 상태가 단백질 분해가 진행되면서 맑게 변하는지 확인하십시오. 조직 샘플이 여전히 용해되지 않았다면 가열 시간을 추가하십시오. 조직의 종류에 따라 더 많은 시간이 소요될 수 있습니다. 장시간 가열 후에도 세포 덩어리가 남아있다면, 샘플을 원심분리하여 상층액을 DNA추출에 사용하십시오. 효율적인 용해를 위해 shaking water bath 또는 rocking platform을 사용하십시오. 초기 샘플 양을 과도하게 사용하였을 수 있습니다. 사용한 샘플 양이 과도하면 용해 및 중화 반응이 불완전하게 진행될수 있습니다. 효율적인 genomic DNA 추출을 위해 적절한 양의 샘플을 사용하십시오. Elution가 불완전하게 진행되었을 수 있습니다. 			
	Elution단계에서 가열 시간을 3분까지 연장하여 수율을 높이십시오. 가열하기 전에 Magnetic Nano Beads가 Elution Buffer에 완전히 풀어진 상태인지 확인하십시오.			
	• 상층액 버리는 과정에서 Magnetic Nano Beads가 손실될 수 있습니다. 상층액을 버리기 전에 모든 Magnetic Nano Beads가 자석에 확실하게 붙었는지 확인하십시오.			
	• Lysis 단계에서 충분하게 섞거나 vortexing 하지 않으면 DNA 수율이 낮아질 수 있습니다. Lysis 중 가열 과정에서 충분히 흔들거나 vortexing 하여 혼합하십시오.			
낮은 A _{260/280} 값	• Washing 단계에서 Magnetic nano Beads의 불완전한 현탁으로 인해 염이 남아있을 수 있습니다. Washing 단계에서 비드가 완전히 풀어진 상태인지 확인하십시오.			

	• Elution 전에 에탄올을 충분히 제거하지 않으면 DNA 순도가 낮아질 수 있습니다.			
	3 rd washing 단계에서의 잔류 에탄올은 DNA 순도를 저하시킬 수 있습 니다.			
제거되지 않은 RNA	 샘플에 DNA와 RNA가 모두 존재하는 경우, 용출된 DNA에 RNA가 포함될 수 있습니다. RNA가 제거된 genomic DNA가 필요한 경우, GB Buffer를 첨가하기 전에 샘플에 RNase A를 첨가하십시오. 용출된 DNA에서 RNA 제거를 원하실 경우, 31 페이지의 "ProtocolVII: 			
	DNA Clean-Up"을 참조하십시오.			
Magnetic Nano Beads 의 응집	• 초기 샘플 양을 과도하게 사용하였을 수 있습니다. 효율적인 genomic DNA 추출을 위해 적절한 양의 샘플을 사용하십시 오. 자세한 내용은 2 페이지의 "제품 사양"을 참조하십시오.			
Buffer에서의 침전물	• TL Buffer 및 GB Buffer를 장기간 저온에 보관했을 경우 흰색 침전물			
발생 현상	이 생성될 수 있습니다.			
20 20	시 시 시 시 시 시 시 시 시 시 시 시 시 시 시 시 시 시 시			
	시오.			
분해된 DNA	• 오래되거나 잘못 보관된 샘플에서 추출한 DNA는 분해되었을 가능성이 높습니다. DNA 수율은 샘플의 보관 조건에 크게 좌우되므로, 최적의 결과를 얻			
	으려면 신선한 샘플을 사용하십시오.			
	보관된 조직 샘플을 사용하는 경우 -70℃에 보관된 샘플을 사용하는			
	것이 좋습니다.			
	• 반복적인 냉해동은 DNA를 분해할 수 있습니다.			
	DNA 손상 방지하기 위해 반복적인 냉동 및 해동을 피하십시오.			
Agarose gel 로딩 시	• 샘플에 에탄올이 남아있을 수 있습니다.			
샘플이 뜨는 현상	로딩 시 샘플이 떠오르는 현상은 잔류 에탄올로 인해 발생합니다.			
	3 rd washing 단계를 올바르게 수행하여 에탄올을 충분히 제거하십시오.			

참고 문헌

Bonham, M. J., & Danielpour, D. (1996). Improved purification and yields of RNA by RNeasy®. *Biotechniques*, *21*(1), 57-60.

Coombs, N.J., Gough, A.C., and Primrose J.N. (1999) Optimisation of DNA and RNA extraction from archival formalin-fixed tissue. *Nucleic Acids Research*, *27*(16), e12.

Reno, C., Marchuk, L., Sciore, P., Frank, C.B., and Hart, D.A. (1997) Rapid isolation of total RNA from small samples of hypocellular, dense connective tissues. *Biotechniques*, *22*(6), 1082-1086.

주문 정보

제품명	Cat. No.
EcoQprep™ Genomic DNA Kit	K-3701

관련 제품

제품명	Cat. No.
EcoQprep™ Magnetic Separation Rack (2 mL)	TM-1012
EcoQprep™ Magnetic Separation Rack (15 mL)	TM-1021
EcoQprep™ Magnetic Separation Rack (50 mL)	TM-1031
1M Tris-HCl (pH 8.0)	C-9006
0.5M EDTA (pH 8.0)	C-9007
Phosphate Buffered Saline (PBS)	C-9024
DEPC-DW	C-9030

36 BQ-Q8-012-01 www.bioneer.com Revision : 6 (2024-11-25)

기호 설명

LOT	Batch Code	Ţ <u>i</u>	Consult Instructions For Use	RUO	Research Use Only	\triangle	Caution
&	Biological Risks	Σ	Contains Sufficient for <n> tests</n>	1	Temperature Limitation		Manufacturer
REF	Catalog Number	2	Do not Re-use	\subseteq	Use-by Date		

37 BQ-Q8-012-01 www.bioneer.com Revision : 6 (2024-11-25)

BIONEER Global Center

Address 71, Techno 2-ro, Yuseong-gu, Daejeon, 34013, Republic of Korea

E-mail sales@bioneer.co.kr **Web** www.bioneer.com

BIONEER Daedeok Center

Address 8-11, Munpyeongseo-ro, Daedeok-gu, Daejeon, 34302, Republic of Korea

E-mail sales@bioneer.co.kr **Web** www.bioneer.com

BIONEER R&D Center

Address Korea Bio Park BLDG #B-702, 700 Daewangpangyo-ro, Bundang-gu, Seongnam-si

Gyeonggi-do, 13488, Republic of Korea

E-mail sales@bioneer.co.kr
Web www.bioneer.com

BIONEER Inc. - USA Branch

Address 155 Filbert St. Suite 216 Oakland, CA 94607, USA

E-mail order.usa@bioneer.us.com

Web us.bioneer.com

Bioneer Biotech Gmbh – European Branch

Address Ludwig-Erhard-Strasse 30-34, 65760 Eschborn, Germany

E-mail euinfo@bioneer.com
Web www.bioneer.com

