

MagListo™ 5M Plant Genomic DNA Extraction Kit

Cat. No. K-3605

MagListo™ 5M Plant Genomic DNA Extraction Kit

Kit for the extraction of genomic DNA from plants

User Guide

K-3605

∑∑ 100

Version No.: 5 (2023-03-10)

Please read all the information in booklet before using the unit

BIONEER Corporation
Bioneer Global Center, 71, Techno-2-ro,
Yuseong-gu, Daejeon, 34013, Republic of Korea

Tel: 1588-9788

Email: sales@bioneer.co.kr

www.bioneer.com

Intended Use

MagListo™ 5M Plant Genomic DNA Extraction Kit is developed and supplied for research purposes only. Certain applications possible with this kit may require special approval by appropriate local and/or national regulatory authorities in the country of use.

Safety Warning and Precaution

Wear appropriate protection when handling any irritant or harmful reagents. The use of a laboratory coat, protective gloves and safety goggles are highly recommended. For more information, please consult the appropriate Material Safety Data Sheet (MSDS).

Warranty and Liability

All BIONEER products undergo extensive Quality Control testing and validation. BIONEER guarantees quality during the warranty period as specified, when following the appropriate protocol as supplied with the product. It is the responsibility of the purchaser to determine the suitability of the product for its particular use. Liability is conditional upon the customer providing full details of the problem to BIONEER within 30 days.

Quality Management System ISO 9001 Certified

Every aspect of our quality management system from product development, production to quality assurance and supplier qualification meets the world-class standards.

Patent

MagListo™ and its kits are protected by the patents KR10-2015-0089172.

Trademark

MagListo™ is a trademark of BIONEER Corporation.

Copyright

Copyright 2022 BIONEER Corporation. All Rights Reserved.

Notice

BIONEER corporation reserves the right to make corrections, modifications, improvements and other changes to its products, services, specifications or product descriptions at any time without notice.

Contents

Product Information	1
Components	1
Storage	1
Specifications	2
Precautions	2
Introduction	3
Product Description	3
Principle	4
Features & Benefits	5
Magnetic Nano Beads	6
<i>MagListo</i> ™ Magnetic Separation Rack	7
Experimental Procedures	8
Procedure Overview	8
Sample Preparation	9
Before You Begin	10
DNA Extraction from Plants for Mini/Midi/Maxi Scale	11
DNA Clean-Up	15
Summary of Reagent Volumes Required in Each Step of DNA Extraction	17
Troubleshooting	18
References	21
Ordering Information	22
Related Products	22
Explanation of Symbols	23

Product Information

Components

This kit contains adequate reagents for 100 reactions.

Components	Amount*	Storage
Proteinase K powder, lyophilized	25 mg x 2 ea	Pofor to the "Storage" holow
RNase A powder, lyophilized	24 mg x 2 ea	Refer to the "Storage" below.
Magnetic Nano Bead	11 ml x 1 ea	
PL Buffer (Tissue Lysis)	35 ml x 1 ea	
PC Buffer (Binding)	30 ml x 1 ea	
PWM1 Buffer (1st Washing)	60 ml x 1 ea	Store at room temperature
W2 Buffer (2 nd Washing)	80 ml x 1 ea	(15-25°C).
WE Buffer (3 rd Washing)	120 ml x 1 ea	
EA Buffer (Elution)	25 ml x 1 ea	
One Page Protocol	1 ea	

^{*} Mini – 100 rxn, Midi – 15 rxn, Maxi – 8 rxn

Storage

The kit will maintain performance for at least three years under standard storage conditions.

All components of the kit should be stored dry at room temperature (15-25°C). Before use, lyophilized Proteinase K and RNase A should be completely dissolved in 1,250 µl and 600 µl of nuclease-free water, respectively. For short term storage, dissolved Proteinase K and RNase A should be stored at 4°C. For long term storage, it is recommended to aliquot these enzymes into separate tubes and store at -20°C.

* Note: Please note that repeated freezing and thawing may reduce its activity.

Specifications

	An	nount of Starting Sam	ple	
Sample Type	Mini	Midi	Maxi	
Plant tissue	< 100 mg	< 500 mg	< 1,000 mg	
Seed	< 50 mg	< 250 mg	< 500 mg	
Elution Volume	100 µl	500 µl	1 ml	
Typical DNA Yield	5-15 μg 15-80 μg		30-150 μg	
DNA purity		$A_{260}/A_{280} > 1.7$		

^{*} Note: There may be differences in measured values depending on the type of samples.

Amount of starting sample

It is recommended to use 100 mg (leaf sample) and 50 mg (seed sample) as staring sample for *MagListo*™ 5M Plant Genomic DNA Extraction Kit (mini scale).

Precautions

Take appropriate laboratory safety precautions and wear gloves when handling because
 PWM1 Buffer contains chaotropic salts which are irritants.

Introduction

Product Description

MagListo™ 5M Plant Genomic DNA Extraction Kit is designed for extraction of highly purified total DNA from plant tissue of leaf and seed. The kit employs Magnetic Nano Beads to extract genomic DNA with the aid of MagListo™ Magnetic Separation Rack. The use of MagListo™ Magnetic Separation Rack along with the kit greatly increases user convenience by shortening the extraction time without centrifugation. The process does not require phenol/chloroform extraction and ethanol precipitation.

DNA extracted through this kit can be used for a variety of applications, including: gene cloning, PCR, Real-time PCR, southern blotting, and SNP genotyping.

Principle

MagListo™ 5M Plant Genomic DNA Extraction Kit is designed for extraction of genomic DNA from plant tissue of leaf and seed. The kit employs Magnetic Nano Beads coated with silica for nucleic acid binding in the presence of chaotropic salts. Guanidine hydrochloride as chaotropic agents in binding buffer removes water molecules around DNA and surface of the silica-coated magnetic nanobeads resulting in genomic DNA, which is captured by silica-coated magnetic nanobeads. The magnetic nanobeads and DNA complexes are pulled and fixed on the tube wall using a magnetic force. Any salts and precipitates are eliminated by washing buffer, and captured genomic DNA is eluted in an elution buffer or nuclease-free water.

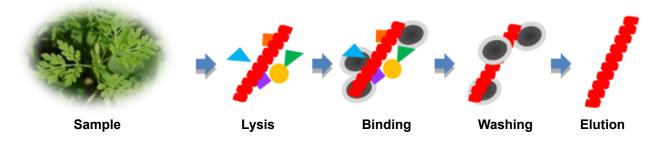


Figure 1. Genomic DNA extraction using silica-coated magnetic nanobeads.

Features & Benefits

- Comprehensive: High quality and yield of genomic DNA extraction from various samples such as leaves, stem, roots, or seeds.
- Convenient: Broad coverage of scales for mini, midi, and maxi isolation protocols with just a single kit (Mini-5 min, Midi-10 min, Maxi-15 min).
- Rapid: Magnetic Nano Beads enable the rapid nucleic acid extraction.

Magnetic Nano Beads

Magnetic Nano Beads have been developed to overcome defects of existing resin and to automate purification process. The principle of extraction using the magnetic nanobeads is that coated functional group on the surface of it binds to nucleic acid. Magnetic nanobeads are then isolated using external magnetic field.

Specification

Silica-coated Magnetic Nano Beads

Matrix	Silica-coated Fe ₃ O ₄		
Average size	400 nm		
Ligand	- OH		
Working Temperature	0-100°C		
Storage	Store at room temperature.		

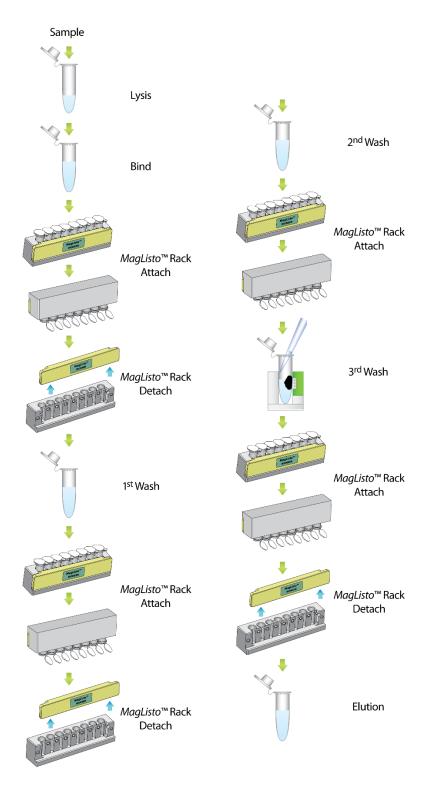
Features & Benefits

- Rapid: Fast binding guarantees high throughput automation.
- Effectiveness: Large surface area enables more sensitive assay.
- Specificity: Globular structure increases specificity by decreasing non-specific binding.

MagListo™ Magnetic Separation Rack

MagListo™ Magnetic Separation Rack is designed for a fast and easy separation of the Magnetic Nano Beads. BIONEER offers various racks of different sizes - MagListo™-8Ch for 8-tube strip and muti-pipette, MagListo™-2 for 2 ml tube, MagListo™-15 for 15 ml tube, and MagListo™-50 for 50 ml tube. These racks consisting of different size allow user to choose the product according to their needs.

The followings are recommended when handling the *MagListo™* Magnetic Separation Rack.


- The product is made of acryl and plastic. Be careful not to drop the product as the dropping may break the product.
- When moving the product, take extra care not to drop the product as it may cause injury.
- If the product is broken, do not discard it with bare hands as the sharp edges may cause injury.
- When an extracted or purified nucleic acid is spilled on the product, immediately rinse it with running water and clean it with 70% ethanol.
- Acetone, toluene, or organic solvent may cause damage to the acrylic and plastic part of the
 product, which may lead to malfunction of the product. Rinse the product immediately when
 the above-mentioned solvent leaks as the expected DNA yield may not be obtained if the
 product is damaged.
- Check the magnet plate part of the product for corrosive liquid. In the event of a sill, it may corrode the magnet during storage and may deteriorate performance, so rinse immediately with running water.

Features & Benefits

- Rapid: Isolates plasmid DNA, genomic DNA, and/or RNA quickly (within 20 minutes) and economically.
- Convenient: Simply disposes waste solution just by flipping the rack without centrifugation or pipetting as the silicon fixture secures the tube.

Experimental Procedures

Procedure Overview

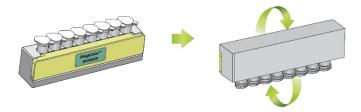
Sample Preparation

Several factors such as harvesting method and storage of starting samples can influence the yield and DNA purity. Freshly collected sample must be stored in a freezer or used immediately after collection. If you are not going to use the plant tissue sample immediately after collection, we recommend storing it in liquid nitrogen or at -70°C. Please avoid repeated freezing and thawing.

Before You Begin

Before proceeding, please check the following:

- 1. Completely dissolve Proteinase K powder in 1,250 μl of nuclease-free water before use. Dissolved Proteinase K should be stored at 4°C.
- 2. Completely dissolve RNase A powder in 600 μl of nuclease-free water before use. Dissolved RNase A should be stored at 4°C.
- 3. Pre-heat EA Buffer at 60°C before use. This process is essential for maximal recovery in filter-based extraction.
- Add indicated volume of absolute ethanol (not provided) to PWM1 Buffer before use (see bottle label).
- 5. Incubate the PL Buffer at 60°C when it has precipitates.
- 6. g-force can be calculated as follows: $rcf = 1.12 x r x (rpm/1,000)^2$
 - * **Note:** Where 'rcf' is the relative centrifugal force (in g), 'r' is the radius of the rotor in centimeters, and rpm is the speed of the centrifuge in revolutions per minute.


DNA Extraction from Plants for Mini/Midi/Maxi Scale

- (Homogenization) Grind (or homogenize) ≤ 100 mg (mini)/ ≤ 500 mg (midi)/ ≤ 1,000 mg (maxi) of tissue sample or ≤ 50 mg (mini)/ ≤ 250 mg (midi)/ ≤ 500 mg (maxi) of seed sample with a mortar and pestle (or homogenizer) and place them into the indicated clean tube below.
 - 1) (Mini) Place the homogenized tissue to a 1.5 ml or 2 ml tube.
 - 2) (Midi/Maxi) Place the homogenized tissue to a 15 ml tube.
 - * **Note:** If the sample is not ground completely, it will result in significantly reduced DNA yields.
- 2. **(Lysis)** Add 300 μl (mini)/ 1.5 ml (midi)/ 3 ml (maxi) of PL Buffer and 10 μl (mini)/ 75 μl (midi)/ 150 μl (maxi) of RNase A to the sample from step 1 and mix well by vortexing.
- 3. Add 20 µl (mini)/ 100 µl (midi)/ 200 µl (maxi) of Proteinase K and mix well by vortexing.
 - * Note: The sample should be completely immersed in the buffer.
- 4. Incubate at 60°C for 10 minutes.
- 5. (**Precipitation**) Add 100 μl (mini)/ 500 μl (midi)/ 1 ml (maxi) of PC Buffer to the lysate and mix well by vortexing. This step precipitates detergent, proteins, and polysaccharides.
- 6. Incubate for 5 minutes (mini)/ 10 minutes (midi, maxi) on ice.
- 7. (Precipitates removal) Centrifuge at $16,000 \times g$ (13,000 rpm) for 5 minutes (mini)/ $3,000 \times g$ (4,000 rpm) for 15 minutes (midi, maxi).
- 8. Transfer the cleared lysate to a new 1.5 ml or 2 ml tube (mini)/ 15 ml tube (midi, maxi).
- 9. (DNA precipitation) Add 2 volumes of PWM1 Buffer and mix well by vortexing.
- 10. **(DNA binding)** Add 100 μl (mini)/ 500 μl (midi)/ 1 ml (maxi) of Magnetic Nano Bead solution to each tube and mix thoroughly by vortexing until the beads are fully resuspended.
- 11. Place the tube in *MagListo*[™]-2 (mini)/ *MagListo*[™]-15 (midi)/ *MagListo*[™]-50 (maxi) Magnetic Separation Rack with the magnet plate attached and invert the rack gently 3-4 times until the beads bind tightly to the magnet.

Figure 2. Attachment of the magnet plate. Combine the magnet plate to the stand.

12. Without removing the tube from *MagListo™* Magnetic Separation Rack, discard the supernatant carefully and completely remove the remaining supernatant using a paper towel by blotting. During this process, the beads containing DNA remain attached to the side of the tube.

Figure 3. How to discard the supernatant. Discard the supernatant by inverting the *MagListo™* Magnetic Separation Rack. The silicone immobilizer inside the stand prevents the tubes from falling. When discarding the supernatant, invert the rack completely so that the solution does not spill on the rack.

13. **(1st Washing)** Detach the magnet plate from *MagListo™* Magnetic Separation Rack. Add 500 µl (mini)/ 3 ml (midi)/ 5 ml (maxi) of PWM1 Buffer to each tube and close the cap. Mix by vortexing until the beads are fully resuspended.

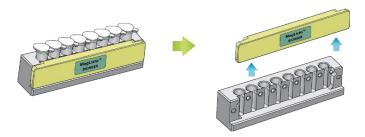
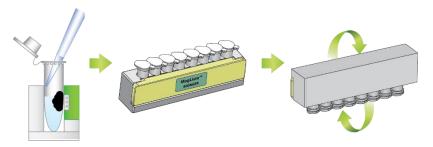



Figure 4. Detachment of the magnet plate. Pull the magnet plate up and gently separate it.

14. Attach the magnet plate to *MagListo*™ stand and invert the rack gently 3-4 times until the beads bind tightly to the magnet.

- 15. Without removing the tubes from *MagListo*™ Magnetic Separation Rack, discard the supernatant carefully and completely remove the remaining supernatant using a paper towel by blotting.
- 16. **(2nd Washing)** Repeat steps 13-15 by adding 700 μl (mini)/ 5 ml (midi)/ 8 ml (maxi) of W2 Buffer for additional washing. Repeat steps 14-15 once more.
- 17. **(3rd Washing)** Without removing the tubes from *MagListo*™ Magnetic Separation Rack, add 700 µl (mini) /8 ml (midi)/ 15 ml (maxi) of WE Buffer to the opposite side of beads. Close the cap and invert the rack twice in order to remove ethanol from the sample.
- 18. Discard the supernatant carefully and completely remove the remaining supernatant using a paper towel by blotting.

Figure 5. Washing the beads to remove residual ethanol. Please refer to the information above.

- * **Note:** Direct pipetting of WE Buffer onto the beads, vortexing and/or vigorous shaking of the tubes may release nucleic acid from the beads, which may result in lower DNA yield.
- 19. **(Elution)** Detach the magnet plate from *MagListo*™ Magnetic Separation Rack. Add 100 μl (mini)/ 500 μl (midi)/ 1 ml (maxi) of EA Buffer to each tube and resuspend DNA by vortexing or pipetting.
- 20. Incubate at 60°C for 1 minute.
- 21. Attach the magnet plate to *MagListo™* Magnetic Separation Rack and invert the rack gently 3-4 times until the beads bind tightly to the magnet.
- 22. Without removing the tube from *MagListo™* Magnetic Separation Rack, transfer

MagListo ™ 5M Plant Genomic DNA Extraction Kit

supernatant containing DNA carefully to a new tube.

23. Discard the tubes with the remaining beads.

* Note: Do not reuse the beads.

DNA Clean-Up

- 1. Transfer the eluted DNA or enzyme reaction products into the indicated clean tube below.
 - 1) (Mini) Transfer the eluate to a 1.5 ml or 2 ml tube.
 - 2) (Midi/Maxi) Transfer the eluate to a 15 ml tube.
- 2. If RNA-free genomic DNA is required, add up to 10 μl (mini)/ 75 μl (midi)/ 150 μl (maxi) of RNase A to the sample, gently mix, and incubate for 2 minutes at room temperature.
- 3. **(Binding)** Add 2 volumes of PWM1 Buffer to 1 volume of the eluted DNA and mix well by vortexing.
- 4. **(DNA precipitation)** Add 2 volumes of absolute ethanol (not provided) to 1 volume of the eluted DNA and mix well by vortexing.
- 5. **(DNA binding)** Add 100 μl (mini)/ 500 μl (midi)/ 1 ml (maxi) of Magnetic Nano Bead solution to each tube and mix thoroughly by vortexing until the beads are fully resuspended.
- 6. Place the tube in *MagListo*™-2 (mini)/*MagListo*™-15 (midi, maxi) Magnetic Separation Rack with the magnet plate attached and invert the rack gently 3-4 times until the beads bind tightly to the magnet.

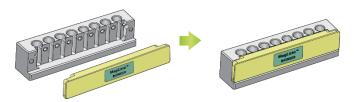
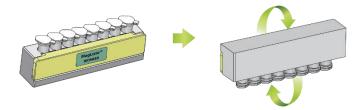



Figure 2. Attachment of the magnet plate. Combine the magnet plate to the stand.

7. Without removing the tube from *MagListo™* Magnetic Separation Rack, discard the supernatant carefully and completely remove the remaining supernatant using a paper towel by blotting. During this process, the beads containing DNA remain attached to the side of the tube.

Figure 3. How to discard the supernatant. Discard the supernatant by inverting the *MagListo*™ Magnetic Separation Rack. The silicone immobilizer inside the stand prevents the tubes from falling. When discarding the supernatant, invert the rack completely so that the solution does not spill on the rack.

8. (1st Washing) Detach the magnet plate from MagListo™ Magnetic Separation Rack. Add 700 µl (mini)/5 ml (midi)/10 ml (maxi) of W2 Buffer to each tube and close the cap. Mix by vortexing until the beads are fully resuspended.

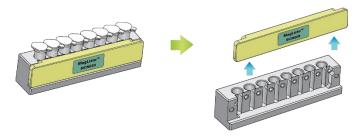


Figure 4. Detachment of the magnet plate. Pull the magnet plate up and gently separate it.

- 9. Attach the magnet plate to *MagListo*™ stand and invert the rack gently 3-4 times until the beads bind tightly to the magnet.
- 10. Without removing the tubes from *MagListo™* Magnetic Separation Rack, discard the supernatant carefully and completely remove the remaining supernatant using a paper towel by blotting.
- 11. Go to step 17 of "DNA Extraction from Plants for Mini/Midi/Maxi Scale" on page 13.

Summary of Reagent Volumes Required in Each Step of DNA Extraction

DNA Extraction from Plant

Step	Buffer	Mini	Midi	Maxi	
Sample	Plant Tissue	< 100 mg	< 500 mg	< 1,000 mg	
Sample	Plant Seed	< 50 mg < 250 mg		< 500 mg	
Lysis	PL Buffer	300 µl	1.5 ml	3 ml	
Precipitation	PC Buffer	100 μl 500 μl		1 ml	
DNA Precipitation	PWM1 Buffer	2 volumes of lysate		te	
DNA Binding	Magnetic Nano Bead	100 μl 500 μl 1		1 ml	
1 st Washing	PWM1 Buffer	500 µl	3 ml	5 ml	
2 nd Washing	W2 Buffer	700 µl	5 ml	8 ml	
3 rd Washing	3 rd Washing WE Buffer		8 ml	15 ml	
Elution EA Buffer		100 µl	500 µl	1 ml	

Troubleshooting

Problem	Comments
Low genomic DNA yield	Buffers or other reagents may have been exposed to conditions that reduce their effectiveness. Store the reagents at room temperature (15-25°C) at all times upon arrival and keep all reagent bottles tightly closed after use to preserve pH and stability and avoid contamination.
	The lysis may have been incomplete, especially in the case of tissue sample. Ensure that sample changes clarity from turbid to clear for occurring protein digestion. Extend the incubation time if tissue sample is still not lysed. It may take more time depending on the type of tissue. If a cell mass still remains after the overnight incubation, centrifuge the sample and use supernatant for DNA extraction. For efficient lysis, you may perform shaking water bath or rocking platform.
	You may have used too much starting material. Too much starting material causes incomplete lysis and neutralization. Appropriate amount of starting sample should be used for efficient extraction of genomic DNA. For mor information, refer to "Specifications" on page 2.
	Elution may have been incomplete. Extend incubation time up to 3 minutes at elution step to improve the yield. In addition, make sure that Magnetic Nano Beads are suspended completely in the Elution Buffer during incubation.
	Pellet of Magnetic Nano Beads could be lost while discarding solution. Check that all of magnetic nanobeads bind tightly to

	magnet when you discard solution.
	 Insufficient shaking or vortexing during lysis step may lead to low DNA yield. Shake or mix by vortexing sufficiently during incubation step.
Low A _{260/280} ratio	 Magnetic Nano Beads may have been washed insufficiently. Wash the beads properly in the 3rd washing step. Remaining ethanol can decrease the DNA purity. Take enough time to properly wash the beads.
	 Incomplete suspension of Magnetic Nano Beads during the washing step causes salts to remain in the purified DNA. Make sure that the beads are suspended thoroughly during the washing step.
	Insufficient centrifugation causes debris and precipitates to remain in the lysate. Increase centrifugation speed and time. Any cell debris or precipitates should be removed before adding magnetic nano bead.
Aggregation of Magnetic Nano Beads	 You may have used too much starting material. Add appropriate amount of starting material. For more information, refer to "Specifications" on page 2.
Presence of a white precipitates in some buffers	 PL Buffer and PWM1 Buffer may have been stored at lower temperatures for a long time. If precipitated, incubate at 60°C to dissolve any precipitates in the buffer.
Degraded DNA	 The DNA from old or incorrectly stored sample may often be degraded. As the DNA yield is highly dependent on storage

MagListo™ 5M Plant Genomic DNA Extraction Kit

conditions of samples, please use fresh samples for	
optimal results. In case of using stored tissue sample, it is	
recommended to use sample stored at -70°C.	

Repeated freezing and thawing may degrade DNA.
 Avoid repeated freezing and thawing.

Sample floating upon loading in an agarose gel

• Sample may contain ethanol.

Floating is caused by remaining ethanol. Ensure that the 3rd washing (ethanol removing) step in the protocol is properly performed.

References

Bonham, M. J., & Danielpour, D. (1996). Improved purification and yields of RNA by RNeasy[®]. *Biotechniques*, *21*(1), 57-60.

Coombs, N.J., Gough, A.C., and Primrose J.N. (1999) Optimisation of DNA and RNA extraction from archival formalin-fixed tissue. *Nucleic Acids Research*, *27*(16), e12.

Reno, C., Marchuk, L., Sciore, P., Frank, C.B., and Hart, D.A. (1997) Rapid isolation of total RNA from small samples of hypocellular, dense connective tissues. *Biotechniques*, *22*(6), 1082-1086.

Ordering Information

Description	Cat. No	
MagListo™ 5M Plant Genomic DNA Extraction Kit	100 reactions	K-3605

Related Products

Description	Cat. No
Proteinase K Powder	KB-0111
RNase A Powder	KB-0101
MagListo™-8Ch Magnetic Separation Rack	TM-1000
MagListo™-2 Magnetic Separation Rack	TM-1010
MagListo™-2-12h Magnetic Separation Rack	TM-1011
MagListo™-15 Magnetic Separation Rack	TM-1020
MagListo™-50 Magnetic Separation Rack	TM-1030

Explanation of Symbols

LOT	Batch Code	Ţ <u>i</u>	Consult Instructions For Use	RUO	Research Use Only	\triangle	Caution
&	Biological Risks	Σ	Contains Sufficient for <n> tests</n>	1	Temperature Limitation		Manufacturer
REF	Catalog Number	2	Do not Re-use	\subseteq	Use-by Date		

BIONEER Corporation - HQ

Address 8-11 Munpyeongseo-ro, Daedeok-gu, Daejeon, 34302, Republic of Korea

E-mail sales@bioneer.co.kr **Web** www.bioneer.com

BIONEER Global Center

Address 71, Techno 2-ro, Yuseong-gu, Daejeon, 34013, Republic of Korea

E-mail sales@bioneer.co.kr **Web** www.bioneer.com

BIONEER R&D Center

Address Korea Bio Park BLDG #B-702, 700 Daewangpangyo-ro, Bundang-gu, Seongnam-si

Gyeonggi-do, 13488, Republic of Korea

E-mail sales@bioneer.co.kr **Web** www.bioneer.com

BIONEER Inc. - USA Branch

Address 155 Filbert St. Suite 216 Oakland, CA 94607, USA

E-mail order.usa@bioneer.com

Web us.bioneer.com

BIONEER Corp. - European Branch

Address Ludwig-Erhard-Strasse 30-34, 65760 Eschborn, Germany

E-mail euinfo@bioneer.com
Web www.bioneer.com

